
1

Dev.Pro - 1 / 5 - 10.08.2025

Dev.Pro
Dev.Pro Website

5 MongoDB Best Practices for Database
Architecture
When you’re planning to create a platform that operates with a large amount of
configured data or has dozens of business entities, it’s important to choose the
correct database design at the outset.

Your cloud and DevOps specialists will need to create a dynamic, high-availability
database that is flexible enough to accomodate frequent schema change. The design
of your future database should be horizontally scalable for better read capacity and
should support entity references.

That’s where MongoDB, a document-oriented NoSQL database, comes in handy. In
this article, we’re going to explain what MongoDB is good for and run through some
of the leading MongoDB best practices.

Reasons to Use MongoDB Database
Design
You might be wondering what MongoDB is used for, or if it will fit your project.
MongoDB can be used for both agility and digital transformation, as well as legacy
system modernization processes.

You can therefore use MongoDB for IoT products, mobile apps, enterprise systems,
content management, and even financial solutions.

Pros of MongoDB Database Design:

Document-oriented — Document-oriented (schema-less) database with a flexible
schema design.
Replication — Provides high availability with replica sets.
Scaling — Scales horizontally using sharding.
Document versioning — Powerful aggregation pipeline framework can be used for
document versioning.
Indexing — Any fields in a document can be indexed.

Cons of MongoDB Database Design

No JOINs – The whole system will be designed with “joins” on the application layer.

https://dev.pro/
https://dev.pro/insights/5-mongodb-best-practices-for-database-architecture/
https://dev.pro/insights/5-mongodb-best-practices-for-database-architecture/
https://dev.pro/capabilities/devops-services/
https://www.mongodb.com/

2

Dev.Pro - 2 / 5 - 10.08.2025

This adds more complexity to the application layer, but reduces the database load.
However, MongoDB has lookups that function similarly to JOINs but also affect
performance and come with limitations. For example, when you concretize a
pipeline for a joined collection, you’re not allowed to include either stage in the
pipeline field.
No foreign keys – The system will be designed with document relations on the
application layer. This adds additional complexity to the application layer and
increases the chances of a mistake. It’s therefore important to initiate thorough
testing that covers all potential cases. While there are several potential downsides,
this method also removes the load from the database to control relations during
inserts and deletes.

Top 5 MongoDB Use Cases for Database
Architecture
Let’s analyze five use cases highlighting how MongoDB can be used in real-world
situations.

Use Case #1: MongoDB Database Design Supports Backward
Compatibility
Imagine a restaurant with 30 menu items. If you want to add or replace an item,
you’d need to reprint the menu entirely. MongoDB’s database design allows you to do
this with no downtime. This is known as backward compatibility support.

This allows you to create a new field or change an existing field while continuing to
support the existing field. This allows a database to work without an upgrade to a
new schema design.

Use Case #2: MongoDB Database Design Assures High Availability
with Replica Sets

3

Dev.Pro - 3 / 5 - 10.08.2025

Example of possible replica set configuration

Documentary-heavy businesses like restaurant chains or logistics centers have
thousands of documents, processes and people. As a result, they require a high level
of protection against data loss and avoidance of maintenance downtime. Moreover,
permanent availability of data is also important, since staff must immediately react if,
for instance, some products run out. MongoDB helps handle these issues.

Instead of using the standard “primary-secondary” replication, businesses can use
MongoDB’s “replica sets,” which contain multiple instances. These instances
consolidate during the work process and offer a high level of access to infrastructure.

How do replica sets work? In the example above, there is a structure that serves as
the primary instance, while the other structures are replicas. If the primary instance
becomes inaccessible, one of the replicas will automatically replace it, since it’s a
built-in process in MongoDB.

Enabling the replica process is quite simple and can be run after adding multiple
commands. After installation, replicas will sync automatically. The only situation
where you’ll need to spend additional time on this task is when your system operates
with a large amount of data.

Use Case #3: MongoDB Database Design Provides Sharding for
Horizontal Scaling
MongoDB sharding helps scale horizontally by splitting data and loads between
several servers. The load can be distributed through several servers and/or data
duplicated to keep the system operating if hardware fails. Selecting the right shard
key is essential for equally distributed data.

4

Dev.Pro - 4 / 5 - 10.08.2025

Example of shard key configuration

What is the role of this feature for database owners? When you launched your
application, you probably didn’t predict the future load. But as your business grew in
popularity, your load needs increased. For example, your online store grew from one
small shop to a nationwide chain. Naturally, to prevent system failures, you need to
add additional servers. Horizontal scaling using sharding helps you do it on the fly
with no downtime.

Use Case #4: MongoDB Database Helps Set Up Reference
Management
Let’s say your project has 100-plus entities with relations between each other and all
relations are configured on the application layer using the same pattern. It can be
applied to a restaurant menu where you have price collection and product collection,
and during the order process, data can be collected from different sources. Like,
tomatoes can be bought from different suppliers at different prices.

If a single-document approach does not match your project needs, you may need to
divide your data between multiple documents (e.g. in various collections or
databases).

MongoDB applications has two methods for reference management:

Manual references – Use the _id field in the documents as reference to each
other.
DBRefs – Use the value of the first document _id field (or collection and database
name) for reference to another document.

Typically, a manual reference approach is most suitable if you need to unite a couple
of related documents. But if your task is to combine documents from multiple
collections, use DBRefs.

Use Case #5: MongoDB Database Design Allows for Document
Versioning Using Aggregation Pipeline
Document versioning makes the history of versions inside your system accessible at
any time. Instead of using multiple systems to control documents, you can store
them all in one database. Document versioning is a helpful solution for highly-
controlled business areas, like financial or healthcare, which require a specific point

5

Dev.Pro - 5 / 5 - 10.08.2025

in time of a dataset.

To facilitate the processing of a large volume of data, MongoDB provides users with
an Aggregation Framework. With the help of this tool, you can improve the
performance of system queries, since the Aggregation Pipeline supports various
embedded features and indexing types.

Let’s review how this works in a real-world example. Let’s say a restaurant uses
MongoDB database design. If the unit price for any item changes from week to week,
MongoDB lets the restaurant save those changes and delivers the correct unit price
on the requested date.

Example of document versioning in action

Summary
MongoDB database design has a variety of strengths, including no-downtime schema
changes, high database availability, and easy reference management. Like any
solution, MongoDB also has drawbacks.

That’s why, before choosing a solution, we recommend turning to database experts
who can share their advice on different options and mitigate risks during
development and migration. If you’re looking for advice, turn to Dev.Pro’s cloud
experts. We can share our expertise to help you adopt the best practice for your
case.

	Dev.Pro
	5 MongoDB Best Practices for Database Architecture

