
1

Dev.Pro - 1 / 5 - 10.06.2025

Dev.Pro
Dev.Pro Website

Service-Oriented Architecture vs
Microservices: What is the Best Systems
Integration Approach?
How many ways are there to build a system’s architecture? Mark Richards, a guru of
software architecture design, suggests in his book “Software Architecture Patterns”
that there are at least five: Layered Architecture, Event-Driven Architecture, Service-
Oriented Architecture (SOA), Microservices Architecture, and Space-Based
Architecture.

There is little available research that points to one of these approaches as the best
option. One could say that SOA and Microservices are trendy, or that Microservices
can’t live up to expectations when compared to SOA. However, research from
TechRepublic proves exactly the opposite.

What makes SOA and Microservices the two most popular options today? Who wins in
the SOA vs Microservices dilemma?

Over a decade ago, monolithic architectures were trendy in the industry. Software
systems have evolved significantly since then. Modern challenges drive new
requirements for software architecture design, calling for more scalable, resilient,
and cost-effective solutions.

For this article, we picked two of the most popular options to compare.

What is Service Oriented Architecture
(SOA)?
Service-Oriented Architecture is a software design approach where your system
consists of independent services (also known as components), each responsible for a
relatively broad business function (like payment processing or website login).

These components are reusable and can be implemented as standalone applications,
making them an excellent option for enterprise-grade companies. SOA applications
range from retail (Walmart, Best Buy, and McDonald’s) to the government sector (the
US Air Force).

https://dev.pro/
https://dev.pro/insights/service-oriented-architecture-vs-microservices-what-is-the-best-systems-integration-approach/
https://dev.pro/insights/service-oriented-architecture-vs-microservices-what-is-the-best-systems-integration-approach/
https://dev.pro/insights/service-oriented-architecture-vs-microservices-what-is-the-best-systems-integration-approach/
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/
https://dev.pro/insights/is-microservices-orchestration-for-you/
https://www.techrepublic.com/resource-library/whitepapers/research-microservices-bring-faster-application-delivery-and-greater-flexibility-to-enterprises/
https://www.zdnet.com/article/cios-speed-to-market-is-the-only-remaining-competitive-advantage/
https://www.zdnet.com/article/something-to-ponder-soa-supports-military-space-program/
https://www.zdnet.com/article/something-to-ponder-soa-supports-military-space-program/

2

Dev.Pro - 2 / 5 - 10.06.2025

What is Microservices Architecture?
Microservices follows a similar approach. The main difference is that this solution is
better at application level, rather than the enterprise level. The services
communicate via an Application Programming Interface (API) to build a single
application for a specific business purpose.

Microservices architecture is cloud-native and is used by SaaS giants like Amazon,
Netflix, and Uber.

Download SOA Creation Stages and Integration Roadmap
SOA Creation Stages and Integration Roadmap

SOA vs Microservices: Pros and Cons
Here is the catch: It’s more appropriate to think about how these services
complement each other, rather than how they stand in opposition to each other. They
are pretty similar (aside from the scale) and follow the same concept (see Figure 1).

Figure 1. The differences between types of architecture design.

When it comes to choosing an approach, here are a few facts that illustrate the high-
level differences:

Microservices architecture is generally more scalable and flexible than SOA
SOA helps handle multiple tasks, while Microservices Architecture is typically built
with the Single Responsibility principle in mind
The primary purpose of Microservices Architecture is to provide a resilient
infrastructure and exclude dependencies, while SOA is all about resource sharing;

Now let’s talk about each in greater detail.

Service-Oriented Architecture Overview
SOA applications are built on the principle of loose coupling, meaning the SOA

https://blog.dreamfactory.com/microservices-examples/
https://blog.dreamfactory.com/microservices-examples/
https://www.brainspire.com/blog/what-is-loose-coupling-why-does-it-matter-for-your-new-project

3

Dev.Pro - 3 / 5 - 10.06.2025

components are designed for minimum dependency on each other. This design
approach allows you to use services at a specific capacity even if one of the
dependent elements goes down. For example, you could still use Google Docs if one
of Google servers goes down. However, some Google Docs features might be
temporarily unavailable.

SOA: Pros SOA: Cons
The reusable components save development
time and can be modified or debugged
easily.

DevOps practices are not widely adopted
yet, so deployment can be complicated.

A wide range of messaging protocols is
available. Software size is significant.

A small range of technologies is used Strict governance, protocols, and
processes are in place.

Table 1. Pros and cons of SOA

All in all, SOA’s reusable components are a blessing and a curse. On the one hand,
you get a rapid development process. On the other hand, if one of those components
fails, issues will likely arise across several systems that share the same component.

SOA services share access to Enterprise Service Bus (ESB), a mechanism that
ensures communication between services. It is possible to have SOA without ESB by
directly connecting each of the services. That would make development costs
significantly higher.

Microservices Architecture
Microservices Architecture employs the idea of loose coupling, as well. However,
there can be many more interconnected services. A microservice system could easily
feature over a dozen services as opposed to only three or four in SOA. However, this
also means Microservices Architecture can be tricky when it comes to Operational
Complexity.

Different services can be developed separately by other development teams. That
means more servers, more data processing, and more potential inconsistency and
connectivity issues. That’s another reason why DevOps is a natural combination with
Microservices Architecture.

Microservice Architecture: Pros Microservice Architecture: Cons
Deployment is easy, DevOps practices
are broadly used.

Testing can be difficult and maintenance can be
expensive.

Software size is small. Only HTTP/REST, JMS, and Thrift APIs are
typically used as messaging protocols.

Relaxed governance, protocols, and
practices. A large range of technologies used

Table 2. Pros and cons of Microservices Architecture

All things considered, Microservices Architectures is a popular choice. A recent study

https://www.ibm.com/account/reg/us-en/signup?formid=urx-49970

4

Dev.Pro - 4 / 5 - 10.06.2025

by IBM found that at least 56% of surveyed enterprises are likely to adopt
Microservices in the next several years.

When to Use Service-Oriented
Architecture
SOA is a good option for large and diverse environments that generally have
more than one application. As far as multiple company departments are concerned,
SOA can help with reusable business processes. Heterogeneous applications and
various messaging protocols can be successfully handled by Enterprise Service Bus,
while strict governance can facilitate and streamline standard procedures. At the
same time, it can take fewer technologies to build SOA, meaning more occasional
maintenance.

SOA vs Microservices: When to Go for
Microservices
Implementing Microservices has several pros and cons. Microservices is a rather
complex architecture, and it should only be used when it’s essential to the
application.

Microservices allows for a great deal of development flexibility. If you’re unsure which
direction the application development will take, Microservices may be the correct
option. That’s because each component can be removed, modified, or added
painlessly (horizontal scaling). Its cloud-native approach allows for easy deployment
and a simplified collaboration process between development team members. This
makes Microservices a great approach for a single yet complex application.

Some common Microservices frameworks are moleculer (NodeJS), microdot (.NET),
nameko (Python), rackstep (Ruby), and Spark (Java).

SOA vs Microservices: Which one Should
you Choose?
The bottom line is that both approaches could be a significant first step for monolithic
application migration. One approach doesn’t necessarily exclude the other — there
are instances where both architecture solutions are used within the same project.

If you still have questions, don’t hesitate to contact the experts at Dev.Pro. We can
offer advice and share our vision for your integration approach.

https://moleculer.services/
https://github.com/gigya/microdot
https://github.com/nameko/nameko
https://github.com/marciofrayze/rackstep
https://sparkjava.com/

5

Dev.Pro - 5 / 5 - 10.06.2025

	Dev.Pro
	Service-Oriented Architecture vs Microservices: What is the Best Systems Integration Approach?

